Trwa ładowanie...

Liczby całkowite - czyli jakie? Przykłady, definicja

Avatar placeholder
14.02.2021 19:05
Liczby całkowite - czyli jakie?
Liczby całkowite - czyli jakie? (Getty images)

Liczby całkowite to liczby naturalne dodatnie (1, 2, 3, 4, 5) oraz liczby przeciwne do nich (-1,-2,-3, -4, -5), a także liczba zero. Są one uogólnieniem zbioru liczb naturalnych na zbiór, w którym wykonalne jest odejmowanie. Co ważne uogólnieniem liczb całkowitych są liczby wymierne.

spis treści

1. Rodzaje liczb

Aby łatwiej zrozumieć, czym są liczby całkowite, sprawdźmy na początku, jakie w ogóle mamy rodzaje liczb.

  • Każda liczba jest liczbą rzeczywistą. Np: -5, 0, 3, π, √8.
  • Wśród liczb rzeczywistych możemy wskazać liczby całkowite: -3, 0, 5 oraz naturalne: 1, 2, 3, 4, 5…
Zobacz film: "Rozrysuj mi to: Rowerowa zmiana ze Škodą i Wrocławską Inicjatywą Rowerową"
  • Czasami do liczb naturalnych zalicza się również liczbę 0.
  • Mamy także liczby wymierne, a więc takie, które można zapisać za pomocą ułamka, np.: ½, ¾, .
  • Każda liczba całkowita jest także liczbą wymierną, a to dlatego, że możemy ją zapisać z pomocą ułamka, np.: 5 = 5/1.
  • Wyróżniamy też liczby niewymierne, czyli np. pierwiastki: √9, √15, √27.
  • Pierwiastki, które można obliczyć, to liczby wymierne, np.: √4 = 2, √9 = 3.
  • Do liczb niewymiernych zaliczamy z kolei π.
  • Liczby wymierne i niewymierne tworzą razem zbiór liczb rzeczywistych.

2. Czym są liczby całkowite?

Liczby całkowite są rozszerzeniem liczb naturalnych, a więc zaliczamy do nich i liczby naturalne i liczby im przeciwne (ujemne), a także liczba zero. A zatem liczby całkowite to np.: ,−10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

W matematyce zbiór liczb całkowitych oznaczamy symbolem “Z” (od niemieckiego Zahlen – liczby) - i to oznaczenie zaleca Ministerstwo Edukacji Narodowej. Jednak dla ułatwienia w większości szkół podstawowych i średnich w Polsce spotykamy się z oznaczeniem “C” dla liczby całkowitych - i takie oznaczenie nie jest błędne.

3. Liczby całkowite a naturalne

Zarówno liczby naturalne jak i całkowite możemy dodawać, mnożyć i potęgować, mając pewność, że wynikiem działania będzie liczba naturalna.

Zbiór liczb całkowitych dodatnich to: Z = (1, 2, 3, 4, 5, 6, …).

A zbiór liczb całkowitych ujemnych: Z = (...−6,−5,−4,−3,−2,−1).

Podsumowując - zbiór liczb całkowitych dodatnich to zbiór liczb naturalnych i ich ujemne odpowiedniki, a także 0.

Polecane dla Ciebie
Pomocni lekarze